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A B S T R A C T   

Understanding the environmental justice implications of the mortality impacts of air pollution exposure is a 
public health priority, as some subpopulations may face a disproportionate health burden. We examined which 
residential environmental and social factors may affect disparities in the air pollution-mortality relationship in 
North Carolina, US, using a time-stratified case-crossover design. Results indicate that air pollution poses a 
higher mortality risk for some persons (e.g., elderly) than others. Our findings have implications for environ-
mental justice regarding protection of those who suffer the most from exposure to air pollution and policies to 
protect their health.   

1. Introduction 

A large body of literature has demonstrated consistent evidence of 
the effects of exposure to air pollution on mortality (Achilleos et al., 
2019; Di et al., 2017; Qu et al., 2018; Wu et al., 2019; Yu et al., 2019). 
Such mortality burdens may vary by population and region. However, 
questions remain on which individual and community factors contribute 
to differences in the associations between air pollution and health 
among subpopulations. Understanding these health disparities and their 
potential determinants is a critical public health concern. 

Recent studies on disparities suggest that several factors such as sex, 
age, pre-existing conditions, race/ethnicity, socioeconomic status (SES), 
and residential environmental factors such as proximity to green spaces 
and blue spaces may be associated with higher risk of adverse health 
outcomes related to exposure to air pollution (Li et al., 2017; Liu et al., 
2019; Ou et al., 2008; Qu et al., 2018; Tibuakuu et al., 2018). For 
example, a study in Hong Kong found that female, the elderly, and 
people with lower SES had increased risk of death associated with air 
pollution compared to other populations (Qiu et al., 2015). Another 
study by Richardson et al. (2013) found that persons in lower-income 
regions in Europe were more susceptible to the health effects of PM10 
than other populations, however the findings varied between Eastern 
and Western Europe, and by type of mortality. Place or neighborhood 
factors may play an important role in explaining spatial heterogeneity in 

air pollution exposure and/or health risk. Living in different residential 
areas may lead to differential exposure to stressors and access to 
neighborhood resources (Gee and Payne-Sturges, 2004). Although some 
studies suggested health disparities from the impacts of exposure to air 
pollution, further work at different locations is needed given the varia-
tion in population characteristics across regions and the potential 
changes in disparities over time given temporal patterns in related 
variables (e.g., air pollution levels, population structure). Identifying the 
most important factors related to disparities to air pollution-mortality 
associations in a given location and the most affected subpopulations 
is critical to establish appropriate plans and conduct effective in-
terventions to protect public health. 

Ozone and PM2.5 are major atmospheric pollutants directly affecting 
human health. The recent Global Burden of Disease (GBD) estimated 
that exposure to ambient PM2.5 causes 4.2 million deaths globally, with 
an additional 254,000 deaths globally caused by ozone exposure (GBD, 
2015). US burden of disease study lists ambient PM2.5 and O3 pollution 
as the 8th and 15th leading risk factors in the US in 2010 (Murray and 
Collaborators, 2013). Numerous studies in many parts of the world 
provided scientific evidence that increased risk of mortality was asso-
ciated with exposure to these pollutants (Fann et al., 2012; Farhat et al., 
2013). The aim of our study was to assess several health disparity factors 
for major air pollutants with mortality associations. Thus, we chose 
PM2.5 and O3 as our key exposure of interest. 
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Recent studies have used predicted air pollutant concentrations, 
which allow for better spatial and temporal coverage than monitoring 
data, to estimate the relationship between ambient air pollution and 
several health outcomes (Bravo et al., 2017; Fann et al., 2018). While 
these values are estimates, they address the lack of high spatial and 
temporal resolution in many ambient monitoring networks. Most mon-
itors are located in urban areas, which may not fully reflect exposure in 
rural regions without monitors. Also, many monitors do not operate 
continuously throughout the year (e.g., measurements every 3 or 6 days 
for PM2.5, only for the warm season for O3), which prohibits the inves-
tigation of cumulative acute exposures over multiple days. Limited 
spatial and temporal resolution of some monitoring networks may 
hinder investigation of exposure and health effects in some regions. 
Thus, health effect estimates based on monitoring data alone may not 
fully capture the susceptibility due to differences between communities 
or subpopulations. 

North Carolina (NC) is relatively large and diverse state with un-
derlying geographies that include extensive agricultural regions and 
forests, coastal areas, and multiple medium-large urban centers. NC has 
a range of air quality with areas in noncompliance with EPA regulations 
for criteria pollutants (e.g., O3, PM2.5) and distinct spatial patterns of 
racial distribution or poverty patterns. This study area allows us to 
evaluate diverse populations and factors regarding environmental 
health disparities. Although previous studies in this area explored the 
relationship between air pollution, race, and SES (Gray et al., 2013) or 
investigated spatial-temporal association between PM2.5 and daily 
mortality (Choi et al., 2009), no study evaluated several residential 
environmental and socioeconomic factors that may affect disparities in 
air pollution-mortality relationships and assessed multiple disparities, 
which can contribute to a better understanding of interactions of 
disparity factors. 

This study investigated the health disparities attributable to expo-
sure to air pollutants (PM2.5, O3) in North Carolina, USA. We used 
Community Multi-scale Air Quality (CMAQ) downscaler output to esti-
mate daily PM2.5 and O3 concentrations for 2002–2013. We evaluated 
which residential environmental and socioeconomic factors affect dis-
parities in air pollution-mortality relationships using a stratified model 
for each effect modifier. Our study has implications for environmental 
justice regarding which subpopulations are vulnerable and which fac-
tors affect disparities in associations between air pollution and mortal-
ity. This work extends current understanding of environmental health 
disparities. 

2. Methods 

2.1. Data 

We obtained individual-level mortality data for North Carolina from 
2002 to 2013 from the North Carolina State Center for Health Statistics, 
Vital Statistics Department. For each participant, mortality data 
included date of death, residential location, sex, age at death (<65, �65 
years), race/ethnicity (non-Hispanic white, non-Hispanic black, His-
panic, non-Hispanic Asian, or non-Hispanic other), education (<12 
years, high school graduate, 1–4 years of college, �5 years of college, or 
unknown), and marital status (never married, married, widowed, 
divorced, or unknown). We excluded participants with incomplete data 
for any variable. We classified mortality data as: total mortality as all 
causes of death except external causes (International Classification of 
Diseases, ICD-10, A00-R99), cardiovascular mortality (ICD-10, I00- 
R99), and respiratory mortality (ICD-10, J00-J99). 

Ambient PM2.5 and O3 concentrations for each of North Carolina’s 
census tracts were obtained for 2002–2013 from the downscaler output 
from the US Environmental Protection Agency (EPA). The downscaler 
utilizes air monitoring station data and Community Multiscale Air 
Quality (CMAQ) output at 12 � 12km grid cell resolution to estimate 
daily air pollution concentrations at census tract centroids. Downscaler 

output includes estimates of daily 24-h average for PM2.5 and daily 8-h 
maximum for O3. For these estimates we assigned exposure based on the 
grid cell in which the participant’s residence was located. Additional 
details for the downscaler modeling approach and evaluation are pro-
vided elsewhere (Berrocal et al., 2012). To compare the robustness of 
effect estimates of downscaler predicted PM2.5 and O3 levels with those 
generated using monitoring data, we obtained daily 24-h PM2.5 and 8-h 
maximum O3 measurement values from the EPA’s Air Quality System. 
We assigned exposures for each participant as the daily measurements 
from monitors nearest each subject’s residence (based on each subject’s 
residential location (latitude/longitude)) including monitors outside 
North Carolina, within 40 km of North Carolina’s boundary. We used the 
downscaler exposure estimates as main analysis and monitor-based 
values as sensitivity analysis. The total number of cases (i.e., deaths) 
for downscaler- and monitor-based estimate was 775,338 and 209,669, 
respectively. There were fewer deaths when using monitor-based esti-
mates as monitor-derived air pollution effect estimates were based on 
the time and locations for which exposure estimates are available from 
both methods. 

Due to lack of measured daily weather data, we used gridded 
weather data at the county level. The gridded weather data using 
Parameter-elevation Regressions on Independent Slopes Model (PRISM) 
interpolation method are reported on a daily basis and at high spatial 
resolutions (4 � 4km grid). PRISM provides data for the continental US. 
The algorithms and the details have been described elsewhere (Daly 
et al., 2008; PRISM Climate Group, 2015). A previous study showed 
good agreement between measured and gridded weather data (Mourt-
zinis et al., 2017). We used daily levels of temperature and dew point 
temperature at the county level. County-level values were calculated as 
the average of all grid cells with centroids within each county. 

To assess health disparity factors in the association between expo-
sure to air pollution and mortality, we included several residential 
environmental and socioeconomic factors based on the previous litera-
ture review. We considered individual-level factors, residential green-
ness, proximity to water bodies, median household income, and 
classification of urbanicity. 

As a residential greenness measure, urban vegetation was assessed 
using the Normalized Difference Vegetation Index (NDVI) derived from 
the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor 
aboard the Terra satellite image from NASA’s Earth Observing System. 
We used the global MODIS product MOD13Q1 version 5, which has been 
corrected for atmospheric contamination from water, clouds, and 
aerosols. This product is a 16-day composite at a spatial resolution of 
250 m. We calculated average NDVI at the ZIP-code level for the study 
period. We categorized average NDVI as above or below the median 
(<0.61 or �0.61). 

We obtained information on water bodies (e.g. river, lake) from the 
North Carolina Department of Environmental Quality Online GIS to 
examine effect modification by proximity to water bodies. We calculated 
the distance from each subject’s residence to water bodies to assess the 
effect of blue space and categorized proximity to water as above or 
below the median (<10.2 km or �10.2 km). 

To assess community-level effect modification we used 2010 Census 
data at the census-tract level including variables of median household 
income, as a surrogate for SES, and population size. We classified 
urbanicity as metropolitan (urban area �50,000 people), micropolitan 
(urban cluster of 10,000–49,999), and rural (urban cluster of <10,000) 
area. We used median values to define categories of income. 

2.2. Statistical analysis 

We applied a time-stratified case-crossover design to estimate the 
association between air pollution and mortality. In this approach, each 
case acts as his or her own control and thus the method has benefits of 
controlling for potential confounding from fixed characteristics by 
design. To avoid selection bias, we applied time-stratified referent 

J.-Y. Son et al.                                                                                                                                                                                                                                  



Health and Place 62 (2020) 102287

3

selection based on same day of the week of the same year when a death 
occurred. Each case could be compared to multiple control days. 

Some O3 monitors operate only during the warm season (e.g., 
April–September) when O3 is anticipated to be high. We generated 
separate effect estimates for the association with mortality for: 1) year- 
round O3 exposure and 2) warm season O3 exposure (April–September). 
We examined the lagged effect of air pollutants with single-day lags (lag 
0, lag 1, lag 2) and multi-day lags (lag 01, lag 02). Lag 0 meant the effect 
of the air pollution on the same day as the day of mortality (i.e., date of 
death). Lag 1 refers to the air pollution on the day before the day of 
death. Lag 02 presented the cumulative effect of the current day and 
prior 2 days’ air pollution on the current day’s mortality. For monitor- 
based effect estimates, we investigated the effect of PM2.5 for only 
single-day lag as most PM2.5 monitors typically record observations 
every three days. 

We conducted additional analyses considering spatial clustering in 
the model. We accounted for spatial autocorrelation from unmeasured 
spatially distributed risk factors by including a random intercept for 
each county where cluster effects are incorporated into the model as 
independent and identically distributed random variables to account for 
the within-cluster correlation. We also conducted additional analysis 
considering NDVI at the county level. 

We calculated Population-attributable risks (PARs) based on the 
calculated effect estimates in this study. The PAR% is the percentage of 
incidence of a disease within a population (exposed and non-exposed), 
due to exposure. This statistic describes the percentage incidence of a 
disease within a population that could be prevented if exposures were 
eliminated. We estimated PARs per pollutant using our risk estimates 
and the following equation: PAR% ¼ 100 � P(R � 1)/[P(R – 1) þ 1], for 
which P is the prevalence of the exposure (i.e., air pollution) in the 
population and is assumed to be 100% as everyone in the population 
exposed to air pollution and R is the relative risk (or OR). 

To examine the potential effect modifiers, we performed stratified 
analyses by individual- and community-level factors for total mortality. 
We then tested statistical significance of differences between effect es-
timates of strata of a potential effect modifier by calculating the 95% 
confidence interval as (Q1-Q2)�1.96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE1

2 þ SE2
2

p
where Q1 and Q2 are 

the estimates for the two strata of the potential effect modifier (e.g., 
male and female), and SE1 and SE2 are their respective standard errors. 
To categorize community-level factors, we tested other cutoff points (e. 
g., quartile) as well as median value. We also investigated multiple 
susceptibilities by combinations of potential factors of effect modifica-
tion (e.g., race/ethnicity and census-tract median income). We fitted 
conditional logistic regression models to estimate the association be-
tween air pollution and mortality. Odds ratios and 95% confidence in-
tervals were calculated on the basis of an increase of 10 μg/m3 in PM2.5 
or 10 ppb in O3. All analyses were conducted using SAS (9.4, SAS 
Institute, Cary, NC, USA) and R (version 3.5.1, R Core Team). 

3. Results 

During the study period, there were 775,338 cases (i.e., total deaths) 
with 3,410,015 control days. Table 1 shows characteristics of the study 
population. The 775,338 total deaths included 261,663 from cardio-
vascular disease and 86,017 from respiratory disease. The study popu-
lation had more females than males (52.3% vs. 47.7%). The majority of 
the deceased were non-Hispanic white (77.7%), and �65 years (75.2%). 
Most subjects had less than a high school level education or were high 
school graduates (71.2%) and were married or widowed (78.5%). For 
community-level characteristics, mean census-tract median income was 
$45,116. Most subjects lived in metropolitan areas (85.0%). For study 
participants, average NDVI was 0.61 and average distance from resi-
dence to water bodies was 12.6 km. 

The average PM2.5 concentrations from CMAQ downscaler and EPA 
monitor were similar, although average O3 concentration for CMAQ 

downscaler output was higher than EPA monitor concentrations. Spatial 
variations in air pollution levels are provided in Fig. 1. Descriptive 
statistics for residential environmental factors are provided in Supple-
mentary Table 1 and air pollution levels based on community-level SES 
are provided in Supplementary Table 2. 

Supplementary Table 3 provides correlation coefficients across var-
iables. Strong positive correlations between downscaler- and monitor- 
derived air pollution concentrations were observed (r ¼ 0.96 for 
PM2.5; r ¼ 0.84 for O3). Average NDVI was negatively correlated with 
county-level total population (r ¼ � 0.48). 

Table 2 shows odds ratios (OR) and 95% confidence intervals (CI) of 
the association between exposure using downscaler-derived PM2.5 and 
O3 for risk of total and cause-specific mortality. All models were 
adjusted for same day’s temperature and dew point temperature. We 
observed positive associations between PM2.5 exposure and risk of total 
and cardiovascular mortality. An 10 μg/m3 increase in lag 01 PM2.5 
exposure was associated with an OR of 1.019 (95% CI 1.012, 1.025) and 
1.017 (95% CI 1.007, 1.028) for total and cardiovascular mortality, 
respectively. For O3, a 10 ppb increase in lag 02 exposure was associated 
with total mortality (OR 1.006; 95% CI 1.002, 1.010). We did not find 
statistically significant associations with respiratory mortality. 

We performed additional analysis for the warm season (April to 
September) O3 (Supplementary Table 4). The effect estimates from the 

Table 1 
Characteristics of study population in NC, 2002–2013.  

Characteristics Statistics 

Cause of death 
Total 775,338 
Cardiovascular 261,663 
Respiratory 86,017 

Sex (N, %) 
Male 369,883 (47.7) 
Female 405,441 (52.3) 
Missing 14 (0.0) 

Race/ethnicity (N, %) 
Non-Hispanic White 602,125 (77.7) 
Non-Hispanic Black 158,449 (20.4) 
Hispanic 5307 (0.7) 
Non-Hispanic Asian 3239 (0.4) 
Non-Hispanic Other 6096 (0.8) 
Missing 122 (0.0) 

Age at death (N, %) 
<65 years 192,631 (24.8) 
�65 years 582,707 (75.2) 

Education (N, %) 
<12 years 303,198 (39.1) 
High school graduate 249,042 (32.1) 
1–4 years of college 175,497 (22.6) 
5 or more years of college 36,141 (4.7) 
Unknown 11,460 (1.5) 

Marital status (N, %) 
Never married 73,592 (9.5) 
Married 308,906 (39.8) 
Widowed 299,738 (38.7) 
Divorced 91,856 (11.9) 
Unknown 1246 (0.2) 

Community-level factors 
Census-tract median income ($, mean � SD) 45,116�18,015 
County-level urbanicity (N, %) 

Metropolitan (urban area �50,000 people) 659,332 (85.0) 
Micropolitan (urban cluster of 10,000–49,999) 113,692 (14.7) 
Rural (urban cluster of <10,000) 2314 (0.3) 

Average NDVI (mean � SD) 0.61 � 0.05 
Distance to water bodies (km, mean � SD) 12.6 � 10.3 
Air Pollution Estimates (mean � SD) 

Downscaler PM2.5 (μg/m3) 11.4 � 5.7 
Downscaler O3 (ppb) 41.7 � 13.7 
Monitor-based PM2.5 (μg/m3) 11.5 � 6.1 
Monitor-based O3 (ppb) 31.3 � 11.1 

Weather variables (mean � SD) 
Temperature (�C) 14.9 � 8.7 
Dew point temperature (�C) 8.2 � 9.8  
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warm season were generally similar with those of year-round O3. 
To confirm the robustness of our findings, we performed additional 

analysis comparing the effect estimates based on exposures from the 
downscaler- and monitor-derived concentrations (Fig. 2). Effect esti-
mates from the monitor-derived concentrations were similar to those of 
the original findings from downscaler-derived concentrations. 

We observed positive associations between exposure to PM2.5 and O3 
and risk of total mortality; for these associations we conducted addi-
tional analyses considering spatial autocorrelation in the model. Results 
were similar to original findings (Supplementary Table 5). We calcu-
lated PAR for air pollution and total mortality. The PARs for total 
mortality due to PM2.5 (lag 01) and O3 (lag 02) exposure were 1.9% and 

0.6% respectively (Supplementary Table 6). Findings from additional 
analysis considering NDVI at the county level were similar with original 
findings (Supplementary Table 7). 

For the exposure lag and mortality for which we observed the largest 
and also the most statistically significant associations (i.e., PM2.5 and O3 
exposure for total mortality), we evaluated effect modification by 
community and individual characteristics. Table 3 shows estimated as-
sociations between air pollution exposure and total mortality stratified 
by community-level factors. We investigated the relationship between 
PM2.5 and O3 exposure and total mortality by residential green space, 
blue space, urbanicity, and census-tract median income level (Table 3). 
We did not find any statistically significant differences between groups. 
However, the association between air pollution and the risk of total 
mortality was slightly higher, although not statistically different, in 
areas with less green space, further distance to water bodies, �50,000 
people, or lower median income level. Estimated associations for O3 
showed similar patterns except for urbanicity and census-tract median 
income level. 

We also assessed potential effect modification by individual char-
acteristics (Table 4). Stratified analyses showed that associations be-
tween PM2.5 exposure and total mortality were higher in males than 
females although these results were not statistically different. We found 
higher risk in persons who were non-Hispanic White or non-Hispanic 
Black, �65 years, less educated (<12 years), never married, and wid-
owed. For O3, we observed similar patterns with slightly higher risk in 
males, persons �65 years, and those who were less educated (<12 
years). 

We conducted additional analysis to assess combined disparities in 
the associations between air pollution and total mortality by combina-
tions of individual- and community-level characteristics (Table 5). We 

Fig. 1. Spatial variations in air pollution levels (A) PM2.5 (B) O3.  

Table 2 
Odds ratios and 95% confidence intervals of PM2.5 and O3 for total and cause- 
specific mortality.   

Total Cardiovascular Respiratory 

Downscaler PM2.5 (per 10 μg/m3) 
Lag 0 1.015 (1.009, 1.020) 1.011 (1.002, 1.020) 1.004 (0.988, 1.020) 
Lag 1 1.015 (1.009, 1.020) 1.016 (1.007, 1.026) 1.002 (0.986, 1.019) 
Lag 2 1.004 (0.998, 1.009) 1.003 (0.993, 1.012) 0.998 (0.982, 1.015) 
Lag 01 1.019 (1.012, 1.025) 1.017 (1.007, 1.028) 1.004 (0.986, 1.023) 
Lag 02 1.018 (1.011, 1.025) 1.016 (1.004, 1.028) 1.003 (0.983, 1.025) 

Downscaler O3 (per 10ppb) 
Lag 0 1.004 (1.001, 1.006) 1.000 (0.995, 1.004) 1.003 (0.995, 1.012) 
Lag 1 1.004 (1.001, 1.007) 1.003 (0.997, 1.008) 0.999 (0.989, 1.009) 
Lag 2 1.003 (1.000, 1.006) 1.003 (0.998, 1.007) 1.000 (0.991, 1.008) 
Lag 01 1.005 (1.002, 1.008) 1.001 (0.996, 1.007) 1.002 (0.991, 1.012) 
Lag 02 1.006 (1.002, 1.010) 1.003 (0.996, 1.009) 1.001 (0.989, 1.012) 

N for downscaler PM2.5 and O3 exposure: 775,338. 
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assessed mortality disparities by combinations of race/ethnicity and 
census-tract median income level. The highest and most significant as-
sociation between PM2.5 exposure and total mortality was found in non- 
Hispanic Black participants living in areas with the lowest community- 
level SES. Of non-Hispanic Black participants, a significant association 
between PM2.5 exposure and total mortality was observed only for those 
living in the lowest census-tract median income level. 

4. Discussion 

In this study, we evaluated which subpopulations are vulnerable and 
which factors affect disparities in associations between exposure to air 
pollution and risk of mortality. Although the results were not statisti-
cally different among groups, some factors such as age, education, and 
urbanicity were associated with higher risk of total mortality from PM2.5 
exposure. For combinations of individual- and community-level factors, 
the magnitude of health disparities observed was more pronounced for 

Non-Hispanic Blacks living in lower community-level SES. 
Our findings of positive associations between short-term exposure to 

PM2.5 or O3 and mortality are consistent with those of many studies in 
the literature, with similar range of effect size (Supplementary Table 8). 
As an example, a recent study by Wu et al. (2019) reported that 
increased exposure to particulate matter (PM2.5, PMcoarse, and PM10) in 
Lanzhou, an industrial city in China, was associated with higher risk of 
cardiovascular mortality. Other studies observed associations between 
short-term exposure to PM2.5 and total mortality (Li et al., 2017; Yorifuji 
et al., 2016). Chen et al. (2017) found strong evidence that short-term 

Fig. 2. Downscaler-vs. monitor-derived air pollution effect estimates based on the times and locations for which exposure estimates are available from both methods: 
(A) PM2.5 (B) warm-season O3. Lines reflect 95% intervals, horizontal estimates represent monitor-derived estimates, Vertical estimates represent downscaler- 
derived estimates. 

Table 3 
Association between air pollution and total mortality, stratified by community- 
level environmental factors.   

PM2.5 O3 

Green space 
Average NDVI <0.61 1.020 (1.011, 1.028) 1.006 (1.000, 1.011) 
Average NDVI �0.61 1.018 (1.009, 1.027) 1.006 (1.001, 1.012) 

Blue space (proximity to water bodies) 
<10.2 km 1.017 (1.008, 1.026) 1.004 (0.999, 1.009) 
�10.2 1.020 (1.011, 1.029) 1.008 (1.002, 1.013) 

Urbanicity 
urban area �50,000 people 1.021 (1.015, 1.028) 1.006 (1.002, 1.010) 
urban cluster of 10,000–49,999 1.001 (0.985, 1.018) 1.004 (0.994, 1.015) 
urban cluster of <10,000 1.014 (0.890, 1.155) 1.040 (0.965, 1.121) 

Census-tract median income 
<41,500 USD 1.021 (1.012, 1.030) 1.004 (0.999, 1.009) 
�41,500 1.016 (1.008, 1.025) 1.008 (1.002, 1.013) 

PM2.5 lag 01; O3 lag 02. 
Cutoff for green space, blue space, and median income: 50% median. 

Table 4 
Association between air pollution and total mortality, stratified by individual- 
level factors.  

Characteristics PM2.5 O3 

Sex 
Male 1.023 (1.014, 1.032) 1.008 (1.003, 1.014) 
Female 1.015 (1.006, 1.023) 1.004 (0.999, 1.009) 

Race/ethnicity 
Non-Hispanic White 1.020 (1.013, 1.027) 1.006 (1.001, 1.010) 
Non-Hispanic Black 1.017 (1.004, 1.031) 1.008 (0.999, 1.016) 
Hispanic 1.003 (0.931, 1.081) 0.959 (0.917, 1.003) 
Non-Hispanic Asian 0.945 (0.859, 1.040) 1.024 (0.967, 1.085) 
Non-Hispanic Other 1.018 (0.947, 1.094) 1.017 (0.974, 1.061) 

Age at death 
<65 years 1.009 (0.996, 1.021) 1.005 (0.997, 1.012) 
�65 years 1.022 (1.015, 1.029) 1.006 (1.002, 1.011) 

Education 
<12 years 1.025 (1.015, 1.035) 1.007 (1.001, 1.013) 
High school graduate 1.016 (1.005, 1.027) 1.003 (0.997, 1.010) 
1–4 years of college 1.013 (1.000, 1.027) 1.005 (0.997, 1.013) 
5 or more years of college 1.017 (0.988, 1.046) 1.013 (0.995, 1.030) 
Unknown 1.003 (0.956, 1.052) 1.013 (0.983, 1.044) 

Marital status 
Never married 1.024 (1.004, 1.044) 1.009 (0.997, 1.021) 
Married 1.017 (1.007, 1.027) 1.006 (1.000, 1.012) 
Widowed 1.023 (1.013, 1.033) 1.007 (1.001, 1.013) 
Divorced 1.006 (0.988, 1.024) 1.000 (0.989, 1.011) 
Unknown 1.123 (0.967, 1.303) 1.077 (0.981, 1.183)  
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exposure to O3 is significantly associated with increased total mortality. 
Our findings on the disparities in air pollution–health associations by 

some individual- and area-level characteristics are consistent with those 
of previous studies, which find disproportionate health burdens from air 
pollution. Many studies showed evidence that some factors such as older 
age, low education, and living in urban areas are associated with higher 
risk of mortality from air pollution exposure, consistent with our find-
ings (Bravo et al., 2016; Deguen and Zmirou-Navier, 2010; Son et al., 
2012). Wong et al. (2008) suggested that people residing in socially 
deprived communities have higher mortality risk from ambient air 
pollution. On the other hand, results for effect modification by some 
factors have varied. Some previous studies found no differences by sex 
(Ren et al., 2010), while others found higher effect for males (Chen et al., 
2010; Son et al., 2012) or females (Kan et al., 2008; Zanobetti and 
Schwartz, 2000). 

In this study, we did not find significant differences by residential 
environmental factors such as green and blue spaces. Studies on health 
disparities attributable to air pollution by residential environmental 
factors such as residential greenness are limited although some research 
examined the direct effect of greenness on health outcomes. A few recent 
studies on effect modification of the PM2.5 mortality association found 
inconsistent results. A recent study by Yitshak-Sade et al. (2019) re-
ported that estimated PM2.5 effects on cardiovascular mortality were 
attenuated by higher neighborhood greenness in areas with lower so-
cioeconomic status. Another study found positive modification of 
greenness on the PM2.5 and mortality association (Kioumourtzoglou 
et al., 2016). Heo and Bell (2019) found that the association between 
short-term exposure to particulate matter and hospitalization was lower 
in areas with more green space. Possible mechanisms of how green space 
might influence health include reduced risks of physical and mental 
illnesses by increased opportunities for physical activity and other 
pathways. Moreover, living near green space may benefit health by 
facilitating social interaction, and can promote recovery from stress 
(Richardson et al., 2010). Also, proximity to water bodies may reduce 
exposure to many urban stressors and have beneficial effects on physi-
ological systems that integrate stress response through higher exposure 
to health promoting factors and behaviors (Crouse et al., 2018). 

Previous findings on disparities in mortality risk related to air 
pollution were inconsistent across different study areas and populations. 
The patterns of disparities varied depending on the health outcomes and 
measures of several variables studied. The differences in health dispar-
ities we observed may result from several factors such as variation in 

population characteristics, distribution and/or composition of charac-
teristics and their interactions within groups (e.g., age, education, and 
racial/ethnic composition in urban/rural population), biological and 
generic vulnerabilities, access to health care and quality, social and 
physical environment, and health-related behaviors (Thomson et al., 
2006). In the analysis of combined disparities by race/ethnicity and 
census-tract median income level, we found that Non-Hispanic Blacks 
living in lower community-level SES (below median) had the highest 
risk estimate for the association between PM2.5 and total mortality. Our 
findings indicate that health disparities may relate to socioeconomic 
differences between/within racial groups; analysis of racial/ethnic dif-
ferences without consideration of other factors such as socioeconomic 
status and access to health care may not fully capture the full and 
complex system. Race/ethnicity and socioeconomic status may be linked 
through psychosocial pathways such as perceived stress, biological 
markers of chronic stress (Morello-Frosch et al., 2011; Goodman et al., 
2005; Gee and Payne-Sturges, 2004). In general, racial minorities tend 
to have lower socioeconomic status, however, socioeconomic differ-
ences do not fully explain racial disparities. Race/ethnicity is highly 
correlated with residential location. Poorer neighborhoods tend to have 
higher rates of psychosocial stressors, which may contribute to health 
disparities. 

A previous study conducted within-race analyses, finding that most 
of the apparent differences in air pollutant effects found across races 
were explained by socioeconomic and/or health care disparities (Gwynn 
and Thurston, 2001). Ito and Thurston (1996) found that black females 
had the highest risk for air pollution impacts for total, respiratory, and 
cancer mortality in race and sex-specific analysis. This may relate to 
multiple factors for the subpopulations and their interactions (e.g., 
correlation between SES and race/ethnicity at the community level, 
relationship between percentage of racial minorities living in urban 
areas with higher levels of pollution and/or harmful residential envi-
ronment, existing health conditions or behaviors) (Martenies et al., 
2017). A challenge to the study of disparities in health risk is that many 
of the characteristics of interest are often correlated. These complexities 
change the isolation of responsible factors that contribute to health 
disparities and different impacts of mechanisms on various populations. 
Evaluation of disparities in health risk relate to multiple relationships 
among possible disparity factors. Thus, more research at the local scale 
is needed to consider the complex interactions among factors on health 
risk from air pollution exposure. 

There are several limitations to this work. We used downscaler 
predictions of air pollution levels that allow us to estimate air pollution 
concentrations at locations and time periods without monitors. 
Although we confirmed that the downscaler-derived findings were 
robust in comparison to results generated using monitoring data for 
areas and times with monitors, we could not evaluate the effect esti-
mates in areas without monitors (e.g., non-urban areas). Urban and non- 
urban areas may have different characteristics of exposure (e.g., 
pollutant mixtures, chemical compositions) and demographics. Thus, 
further research considering uncertainty on differences in urban and 
non-urban areas is warranted. We used 2010 Census data to estimate 
population characteristics for the study period (2002–2013). Using 2010 
Census data may not perfectly reflect actual population characteristics 
for the period 2002–2013. However, assigning more timely data may 
introduce uncertainty as well due to some issues such as data from 
different sources, boundary changes over time. For example, ACS and 
Census data are not equivalent and there are some differences between 
the ACS and Census data such as residence rules, reference periods, 
definitions, and methods between the two data sources that can impact 
comparability. Thus, we used only 2010 Census data for the whole study 
period for consistency. Also, for our Census variables there is likely to be 
little relative change across the Census tracts overall across time. Some 
measures of disparity factors we considered (e.g., census-tract median 
household income for community-level socioeconomic status) may not 
fully reflect the actual aspects of each factor, although the correlations 

Table 5 
Association between PM2.5 exposure and total mortality in urban areas, stratified 
by combinations of factors.   

Census- 
tract 
median 
income 
<33,750 
(25%) 

Census-tract 
median income 
33,750–41,500 

Census-tract 
median income 
41,500–52,269 

Census- 
tract 
median 
income 
�52,269 
(75%) 

Race/ethnicity 
Non- 

Hispanic 
White 

1.021 
(1.003, 
1.040) 

1.025 (1.009, 
1.041) 

1.021 (1.007, 
1.036) 

1.022 
(1.008, 
1.035) 

Non- 
Hispanic 
Black 

1.035 
(1.013, 
1.058) 

1.006 (0.976, 
1.036) 

1.008 (0.974, 
1.043) 

1.020 
(0.984, 
1.058) 

Hispanic 1.005 
(0.867, 
1.166) 

0.926 (0.777, 
1.103) 

1.106 (0.948, 
1.286) 

0.971 
(0.840, 
1.123) 

Non- 
Hispanic 
Asian 

0.978 
(0.764, 
1.254) 

0.867 (0.687, 
1.093) 

0.986 (0.809, 
1.202) 

0.906 
(0.780, 
1.053) 

Non- 
Hispanic 
Other 

1.033 
(0.937, 
1.139) 

1.171 (0.992, 
1.383) 

0.772 (0.587, 
1.015) 

0.896 
(0.672, 
1.195)  
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between several measures of SES in this study were highly correlated 
with each other (Supplementary Table 9). Many studies have used 
several measures such as individual- or community-level measures of 
income and education to represent SES, however SES has complexities of 
several correlated factors (e.g., historical income) that may affect the 
associations and combinations of these variables (Williams et al., 2010). 

Strengths of our study include the use of geocoded individual-level 
mortality data with high spatial and temporal resolution exposure 
data. Our study was able to estimate the health effect of cumulative 
short-term exposure to PM2.5 in areas and time periods without daily 
monitoring data. For some factors, we were able to assess multiple dis-
parities (e.g., race and SES), which contributes to a better understanding 
of interactions of disparity factors and to environmental justice more 
broadly. 

5. Conclusions 

We provide additional evidence confirming previous work indicating 
that short-term exposure to PM2.5 and O3 are positively associated with 
increased risk of mortality. Our assessment of combined disparities 
indicate that the multiple aspects of disparity factors may affect 
disproportionate mortality burdens from air pollution exposures. The 
findings from our work have important implications for environmental 
decision making by identifying priorities for policy intervention on 
modifiable factors. This work can help focus on more efficient policy 
actions to mitigate health impacts for vulnerable populations with 
limited resources. Our findings on environmental health disparities 
provide valuable evidence for decision makers and help inform future 
research on environmental justice. 
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